Analytical Ultracentrifuges | Beckman Coulter
Location: LFG, Haberstraße 9a, 91058 Erlangen, Room U1.826
Analytical ultracentrifugation is one of the most versatile and accurate methods for characterizing proteins, macromolecules, nanoparticles and other heterogeneous mixtures. Analytical ultracentrifugation provides direct access to the size, density and shape of particulate systems. The principle of sedimentation analysis is based on the optical detection of radius- and time-resolved signals. An important distinguishing feature of analytical ultracentrifuges is their detection systems.
Beckman Coulter, Optima XL-90K with Multiwavelength Extinction Detector
Analytical ultracentrifuge with multi-wavelength extinction detector, particularly suitable for three-dimensional sedimentation analysis. Ability to extract sedimentation coefficient dependent UV-Vis-NIR spectra. For polydisperse samples, spectral assignment to different sizes/fractions is possible.
- Rotor speed: 1,000 rpm to 60,000 rpm
- Rotor: 4-hole (for up to 8 samples) or 8-hole (for up to 16 samples)
- Sample volume: 0.1 mL to 0.4 mL
- Particle size: 0.2 nm to 1000 nm (depending on particle density)
- Detector: multiwavelength extinction detector (220 nm to 1,100 nm)
- Temperature control: 4 to 40 °C
- Measuring cell: various materials and optical path lengths
- Measurement modes: sedimentation velocity, sedimentation equilibrium, speed ramp
Beckman Coulter, Optima XL-80K with Multiwavelength Emission Detector
Analytical ultracentrifuge with multi-wavelength emission detector, particularly suitable for three-dimensional sedimentation analysis. Ability to extract sedimentation coefficient dependent emission spectra. This allows spectral assignment to different sedimentation coefficients/fractions for polydisperse samples. The instrument is equipped with lasers with excitation wavelengths of 405 nm and 520 nm.
- Rotor speed: 1,000 rpm to 50,000 rpm
- Rotor: 8-hole (for up to 16 samples)
- Sample volume: 0.35 mL
- Particle size: 0.2 nm to 1000 nm (depending on particle density)
- Detector: multiwavelength emission detector (405 nm/520 nm to 1,100 nm)
- Temperature control: 4 to 40 °C
- Measuring cell: including 3 mm titanium centerpiece
- Measurement modes: sedimentation velocity, sedimentation equilibrium, speed ramp
Beckman Coulter, Optima AUC
Analytical ultracentrifuge with single wavelength extinction detector and interference detector. The interference detector is particularly suitable for the analysis of non-absorbent and concentrated samples.
- Rotor speed: 1,000 rpm to 60,000 rpm
- Rotor: 4-hole (for up to 6 samples) or 8-hole (for up to 14 samples)
- Sample volume: 0.1 mL to 0.4 mL
- Particle size: 0.2 nm to 1000 nm (depending on particle density)
- Detector: extinction (190 to 800 nm) and interference
- Temperature control: 5 °C to 40 °C
- Measuring cell: various materials and optical path lengths
- Measurement modes: sedimentation velocity, sedimentation equilibrium, speed ramp
- https://www.beckman.de/centrifuges/analytical-ultracentrifuges/optima-auc
- Separation of Indium Phosphide/Zinc Sulfide Core-Shell Quantum Dots from Shelling Byproducts through Multistep Agglomeration
Rezvani A., Wang Z., Wegner KD., Soltanmoradi H., Kichigin A., Zhou X., Gantenberg T., Schram J., Apeleo Zubiri B., Spiecker E., Walter J., Resch-Genger U., Segets D.
In: ACS nano 19 (2025), p. 19080 – 19094 - Global analysis of sedimentation velocity data sets from multiwavelength analytical ultracentrifugation experiments using enhanced regularisation techniques
Spruck C., Pflug L., Walter J.
In: Analyst 150 (2025), p. 5147-5165 - Investigation of the Degree of Functionalization and Colloidal Stability of Shell-by-Shell Functionalized TiO2 Nanoparticles as a Function of Different Phosphonic Acid Chain Lengths
Stiegler L., Wedler V., Büküşoğlu İ., Hirsch A., Peukert W., Walter J.
In: Chemistry – A European Journal 31 (2025), Article No.: e202501008 - Analysis of Giant-Shell CdSe/CdS Quantum Dots via Analytical Ultracentrifugation Combined with Spectrally Resolved Photoluminescence
Stiegler L., Wegner KD., Weigert F., Peukert W., Resch-Genger U., Walter J.
In: Small Methods (2025), Article No.: 2401700 - Shell-by-Shell functionalized nanoparticles as radiosensitizers and radioprotectors in radiation therapy of cancer cells and tumor spheroids
Wedler V., Stiegler L., Gandziarowski T., Walter J., Peukert W., Distel L., Hirsch A., Klein S.
In: Colloids and Surfaces B: Biointerfaces 245 (2025), Article No.: 114276 - A fundamental approach to buoyant density determination by DGE-AUC
Yarawsky AE., Cardenas Lopez P., Walter J., DeLion MT., Paul LN.
In: Analytical Biochemistry 704 (2025), Article No.: 115907 - Hydrolase and Peroxidase Activity of Gold Nanocluster Composites with Lysozyme and Cross-Linked Lysozyme Crystals
Akyüz Ö., Brodhag M., Lautenbach V., Krumova M., Onishchukov G., Walter J., Gavira JA., Cölfen H.
In: ACS Applied Nano Materials (2024) - Hydrolase and Peroxidase Activity of Gold Nanocluster Composites with Lysozyme and Cross-Linked Lysozyme Crystals
Akyüz Ö., Brodhag M., Lautenbach V., Krumova M., Onishchukov G., Walter J., Gavira JA., Cölfen H.
In: ACS Applied Nano Materials (2024) - Size and Shape Selective Classification of Nanoparticles
Damm C., Long D., Walter J., Peukert W.
In: Powders 3 (2024), p. 255-279 - Development of an advanced multiwavelength emission detector for the analytical ultracentrifuge
Lautenbach V., Onishchukov G., Wawra S., Frank U., Hartmann L., Peukert W., Walter J.
In: Nanoscale Advances (2024) - In-Situ Investigation of Structural Changes of Biomolecules at Interfaces and under the Influence of Fluid Mechanical Stress
Lautenbach V., Uttinger M., Guckeisen T., Lübbert C., Onishchukov G., Walter J., Hosseinpour S., Peukert W.
Springer Nature, 2024 - Carbon nano-onions: Individualization and enhanced water dispersibility
Lucherelli MA., Stiegler L., Steiger F., Åhlgren EH., Requena-Ramírez J., Castro E., Echegoyen L., Hirsch A., Peukert W., Kotakoski J., Walter J., Perez-Ojeda Rodriguez ME., Abellán G.
In: Carbon 218 (2024), p. 118760 - Mechanistic insights into silver-gold nanoalloy formation by two-dimensional population balance modeling
Traore N., Schikarski T., Cardenas Lopez P., Körner A., Cardenas Lopez P., Hartmann L., Fritsch B., Walter J., Hutzler A., Pflug L., Peukert W.
In: Chemical Engineering Journal 483 (2024), Article No.: 149429 - Optimizing the Shelling Process of InP/ZnS Quantum Dots Using a Single-Source Shell Precursor: Implications for Lighting and Display Applications
Wang Z., Wegner KD., Stiegler L., Zhou X., Rezvani A., Odungat AS., Apeleo Zubiri B., Wu M., Spiecker E., Walter J., Resch-Genger U., Segets D.
In: ACS Applied Nano Materials (2024) - Nanoparticle Clustering in Supraparticles to Control Magnetic Long-Range Interactions
Wolf A., Zhou H., Groppe P., Stiegler L., Kämäräinen T., Peukert W., Walter J., Wintzheimer S., Mandel K.
In: Particle & Particle Systems Characterization 42 (2024), Article No.: 2400180
| PK 1 | PK 2 | PK 3 | PK 4 | PK 5 |
|---|---|---|---|---|
| € | € | € | € | € |